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Coupled Slot Line Field Components

RAINEE NAVIN SIMONS, MEMBER IEEE, AND RAJENDRA K. ARORA, SENIOR MEMBER, IEEE

Abstract —The paper presents expressions for the odd- and even-mode
electric field components and the magnetic field components in the air and
dielectric regions of the coupled slot line structure. These expressions are
numerically computed and the fields in the cross section and the longitudi-
nal section are illustrated.

I. INTRODUCTION

HE SLOT LINE on a dielectric substrate [1] is a very

useful transmission line for MIC applications [2]-[4].
Recently Cohn [5] has presented expressions for the electric
field and the magnetic field components in the dielectric
region and the air regions of a slot line.

In this paper, expressions for the odd- and even-mode
electric field components and also the magnetic field com-
ponents in the dielectric region and the air regions of the
coupled slot line structure are presented. These expressions
are numerically computed at various points in the dielectric
region and the air regions of the structure. The odd- and
even-mode electric field and also the magnetic field in the
cross section, and the odd- and even-mode magnetic field
in the longitudinal section through the slot, are illustrated.

II. DERIVATION OF THE FIELD COMPONENTS

The coupled slot line on a dielectric substrate is il-
lustrated in Fig. 1(a). For the case of odd excitation, a
magnetic wall is placed at the y = 0 plane; it then suffices
to restrict the analysis to the right half of the structure. A
similar simplification is possible for the case of even excita-
tion except that the magnetic wall at the y =0 plane is
replaced by an electric wall. As in the earlier analysis [6]
the coupled slot-line problem is reduced to a rectangular
waveguide problem by inserting electric walls in the planes
perpendicular to the slot at x=0 and x=a=A"/2 (X' is
the slot mode wavelength) and magnetic wall at y = b; and
this is illustrated in Fig. 1(b) and (c).

On the air side of the slot (z=<0), the E, and E,
components of the electric field and H,, H, and H,
components of the magnetic field exist. From Maxwell’s
equations it follows that the E_ component of the electric
field on the air side of the slot is zero. On the substrate side
of the slot these plus E, component of the electric field
exist. The E, component of the electric field and the H,
component of the magnetic field are determined as ex-
plained in an earlier analysis [6], while the rest of the
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Fig. 1. (a) Schematic of the coupled slot line. Development of wave-
guide model for coupled slot line field components: (b) an electric wall
is placed at the plane y = 0 for the even mode of excitation; and (c) the
electric wall is replaced by a magnetic wall for the odd mode of
excitation.

electric field and the magnetic field components are de-
termined by the application of Maxwell’s equations. The
detailed derivation of the field components is presented
elsewhere [7].

The rectangular coordinates x, y, z, the slot width w,
substrate thickness d, distance of separation between the
slots s, and relative permittivity of the substrate material ¢,
are indicated in Fig. 1(a). A factor exp j(wt —2mx /X’) is
assumed for each field component, implying wave propa-
gation in the + x direction only; ¥} is the voltage directly
across the slot

(1)

_(s/2+w
Vo—fs/z E,dy.
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III. ObpD-MoODE FIELD COMPONENTS

A. Air Side of the Slot z<0
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C. Substrate Side of the Slot z = d

The expressions for the field components on the sub-
strate side of the slot z=>d, are derived from (7)-(12) by
replacing v,,z by v,,d. Further, the equations are multi-
plied by the factor exp[—v,(z —d)] indicating that the
fields decay exponentially. Symbols not defined above are
n=376.7Q, 8=w/b, §=(s+w)/b, and

by, _ 2bv \?
L 14 (22) (13)
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IV. EvEN-MODE FIELD COMPONENTS

A. Air Side of the Slot z<0
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C. Substrate Side of the Slot z=d

The expressions for the field components on the sub-
strate side of the slot z>=d are derived from (23)-(28) by
replacing v,,z by v,,d and multiplying by the factor
exp[— v,(z — d)]. Symbols not defined above are

2
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V. NUMERICAL RESULTS

Figs. 2 and 3 illustrate the computed electric field and
the magnetic field, respectively, in the cross section of the
coupled slot line structure for the odd-mode of excitation.
The relative permittivity ¢, is taken as 16, d /A =0.07,
s/d =1, w/d = 0.4, frequency equal to 3 GHz and b - 0.
Since the expressions involve summing an infinite series,
the following criterion for terminating the series at n, is
adopted: n,=n,/(1+:z/2,), where n, and z, are con-
stants. In the above case n,=1000 and z, =0.005 in is
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Fig. 2. Electric field distribution in the cross section (x =0 plane) for
the odd mode.

Fig. 3. Magnetic field distribution in the cross section (x = 0 plane) for

the odd mode.

found suitable. Hence 1000 terms are used at z =0, and 10
terms at z = 0.5 in. It is observed that the electric field lines
extend across the slot while the magnetic field lines are
perpendicular to the air—dielectric interface in the slot. The
electric and magnetic field in the right half of the structure
are in a direction opposite to the electric and magnetic
field in the left half of the structure. Furthermore, part of
the magnetic field lines encircle the center conducting strip
separating the two slots. At this instance it may be pointed
out that the coupled slot line structure for the odd-mode of
excitation reduces to a coplanar waveguide (CPW) [8].
Hence it should be possible to realize coplanar waveguide
circulators whose function is dominated by the transverse
magnetic field component [9]. The longitudinal view in Fig.
4 shows that in the air regions the magnetic field lines
curve and return to the slot at half-wavelength intervals.
Consequently, a wave propagating along the structure has
an elliptically polarized magnetic field. Hence it should be
possible to successfully exploit the elliptically polarized
magnetic field in the design of coplanar waveguide reso-
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Fig. 4. Magnetic field in the longitudinal section (y={(s/2+w/2)
plane) through the slot for the odd mode.

N N

Fig. 5. Electric field distribution in the cross section (x = 0 plane) for
the even mode.

Fig. 6. Magnetic field distribution in the cross section (x = 0 plane) for
the even mode.

nance isolators and differential phase shifters [8]. A knowl-
edge of the field components should also prove useful in
the design of mode launchers, such as, between slot line
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Fig. 7. Magnetic field in the longitudinal-section (y=(s/2+ w/2)
plane) through the slot for the even mode.

and coplanar waveguide and, between coplanar waveguide
and microstrip line [4].

Figs. 5 and 6 illustrate the computed electric field and
magnetic field, respectively, in the cross section, for the
even-mode of excitation. It is observed that the electric
field lines extend across the slot while the magnetic field
lines are perpendicular to the air—dielectric interface in the
slot. The electric and the magnetic field in the right half of
the structure are in the same direction as the electric and
the magnetic field in the left half of the structure. Further-
more, the magnetic field lines are almost plane at the
center of the slots and warp into a curved surface at the
edges of the conductors. It is interesting to note that for
small values of the slot separation, the metal strip separat-
ing the slots has negligible effect on the propagating wave
and, the wave propagates as if it were in a slot line of width
(2w + 5) [10]. By gradually increasing the distance of sep-
aration between the slots the two waves are decoupled and
in the limit s —» oo they propagate as two independent
waves in a slot line of width w. The longitudinal view in
Fig. 7 shows that in the air regions the magnetic field lines
curve and return to the slot at half-wavelength intervals.
Consequently, a wave propagating along the slot line has
an elliptically polarized magnetic field. Hence, it should be
possible to successfully design planar ferrite phase shifters

(2].
VI. ConcLusioN

The paper presents expressions for the odd- and
even-mode electric field components and the magnetic field
components in the air and dielectric regions of the coupled
slot line structure. These expressions are numerically com-
puted and the fields in the cross section and the longitudi-
nal-section are illustrated. In the cross section the electric
field extends across the slot while the magnetic field is
perpendicular to the air—dielectric interface in the slot. In
the longitudinal section through the slot, the magnetic field
is elliptically polarized.
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